Phased, chromosome-scale genome assemblies of tetraploid potato reveals a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity
Authors
Date Issued
2022-03Language
enType
Journal ArticleReview status
Peer ReviewISI journal
Accessibility
Open AccessUsage rights
CC-BY-4.0Metadata
Show full item recordCitation
Hoopes G., Meng X., Hamilton J.P., Achakkagari S.R., de Alves Freitas Guesdes F., Bolger M.E., Coombs J.J., Esselink D., Kaiser N.R., Kodde L., Kyriakidou M.,Lavrijssen B., van Lieshout N., Shereda R., Tuttle H.K., Vaillancourt B., Wood J.C., de BoerJ.M., Bornowski N., Bourke P., Douches D., van Eck H.J., Ellis D., Feldman M.J., Gardner K.M., Hopman J.C.P., Jiang J., De Jong W.S., Kuhl J.C., Novy R.G., Oome S., Sathuvalli V., Tan E.H., Ursum R.A., Vales M.I., Vining K., Visser R.G.F., Vossen J., Yencho G.C., Anglin N.L., BachemC.W.B., Endelman J.B., Shannon L.M., Strömvik M.V., Tai H.H., Usadel B., Buell C.R., and FinkersR. (2022). Phased, chromosome-scale genome assemblies of tetraploid potato reveals a complexgenome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant. ISSN 1752-9867. 38 p.
Permanent link to cite or share this item: https://hdl.handle.net/10568/118050
Abstract/Description
Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations predicted to have a high negative impact on protein function, complicating breeder’s efforts to reduce genetic load. The StCDF1 locus controls maturity and analysis of six tetraploid genomes revealed 12 allelic variants correlated with maturity in a dosage dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.
CGIAR Author ORCID iDs
Genevieve Hoopes Halvorsenhttps://orcid.org/0000-0002-1472-5657
Xiaoxi Menghttps://orcid.org/0000-0001-7217-2037
John Hamiltonhttps://orcid.org/0000-0002-8682-5526
Sai Reddy Achakkagarihttps://orcid.org/0000-0002-5554-6110
Marie Bolgerhttps://orcid.org/0000-0001-6335-1578
danny esselinkhttps://orcid.org/0000-0001-9803-7386
Noelle L. Anglinhttps://orcid.org/0000-0002-3454-1142
Martina Stromvikhttps://orcid.org/0000-0002-0501-3703
David Ellishttps://orcid.org/0000-0002-0209-2784
Other CGIAR Affiliations
AGROVOC Keywords
Subjects
GENEBANK; GENETIC RESOURCES; GENETICS, GENOMICS AND CROP IMPROVEMENT SCIENCES GGCI; POTATO AGRI-FOOD SYSTEMS; POTATOES;Organizations Affiliated to the Authors
Michigan State University; University of Minnesota; McGill University; Wageningen University & Research; Forschungszentrum Jülich; International Potato Center; United States Department of Agriculture; Fredericton Research and Development Centre; Cornell University; University of Idaho; Oregon State University; University of Maine; Texas A&M University; North Carolina State University; University of Wisconsin-MadisonCollections
- CIP Journal Articles [1073]
- CIP potato agri-food systems program [808]