CGSpaceA Repository of Agricultural Research Outputs
    View Item 
    •   CGSpace Home
    • CGIAR Research Programs and Platforms (2012-2021)
    • CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)
    • CCAFS Journal Articles
    • View Item
       
    • CGSpace Home
    • CGIAR Research Programs and Platforms (2012-2021)
    • CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)
    • CCAFS Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intercontinental trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere

    Thumbnail
    Authors
    Hollaway MJ
    Arnold, S.R.
    Challinor, Andrew J.
    Emberson, L.D.
    Date Issued
    2012-01
    Language
    en
    Type
    Journal Article
    Accessibility
    Open Access
    Usage rights
    CC-BY-3.0
    Metadata
    Show full item record
    Share
    
    Citation
    Hollaway MJ, Arnold SR, Challinor A , Emberson LD. 2011. Intercontinental trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere. Biogeosciences 9(1): 271-292.
    Permanent link to cite or share this item: https://hdl.handle.net/10568/25147
    DOI: https://doi.org/10.5194/bg-9-271-2012
    Abstract/Description
    Using a global atmospheric chemistry model, we have quantified for the first time, intercontinental transboundary contributions to crop ozone exposure and subsequent yield reductions in the Northern Hemisphere. We apply four metrics (AOT40, M7, M12, W126) to assess the impacts of 100% reductions in anthropogenic NOx emissions from North (N) America, South East (SE) Asia and Europe on global and regional exposure of 6 major agricultural crop types to surface ozone, and resultant crop production losses during the year 2000 growing season. Using these metrics, model calculations show that for wheat, rice, cotton and potato, 100 % reductions in SE Asian anthropogenic NOx emissions tend to produce the greatest global reduction in crop production losses (42.3–95.2%), and a 100 % reduction to N~American anthropogenic NOx emissions results in the greatest global impact on crop production losses for maize and soybean (59.2–85.9%). A 100% reduction in N~American anthropogenic NOx emissions produces the largest transboundary impact, resulting in European production loss reductions of between 14.2% and 63.2%. European NOx emissions tend to produce a smaller transboundary impact, due to inefficiency of transport from the European domain. The threshold nature of the AOT40 ozone-exposure metric results in strong dependence of non-local emissions impacts on the local ozone concentration distribution. Our calculations of absolute crop production change under emission reduction scenarios differ between the metrics used, however we find the relative importance of each region's transboundary impact remains robust between metrics. Our results demonstrate that local air quality and emission control strategies have the potential to partly alleviate ozone-induced crop yield loss in continents downstream, in addition to effectively mitigating local ozone-induced production losses.
    Other CGIAR Affiliations
    Climate Change, Agriculture and Food Security
    AGROVOC Keywords
    crops; ozone; models; yield losses
    Subjects
    CLIMATE-SMART TECHNOLOGIES AND PRACTICES; DATA AND TOOLS FOR ANALYSIS AND PLANNING;
    Regions
    Europe; Northern Africa; South-eastern Asia
    Collections
    • CCAFS Journal Articles [1251]

    AboutPrivacy StatementSend Feedback
     

    My Account

    LoginRegister

    Browse

    All of CGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesBy AGROVOC keywordBy ILRI subjectBy RegionBy CountryBy SubregionBy River basinBy Output typeBy CIP subjectBy CGIAR System subjectBy Alliance Bioversity–CIAT subjectThis CollectionBy Issue DateAuthorsTitlesBy AGROVOC keywordBy ILRI subjectBy RegionBy CountryBy SubregionBy River basinBy Output typeBy CIP subjectBy CGIAR System subjectBy Alliance Bioversity–CIAT subject

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    AboutPrivacy StatementSend Feedback