CGSpaceA Repository of Agricultural Research Outputs
    View Item 
    •   CGSpace Home
    • International Center for Tropical Agriculture (CIAT)
    • CIAT Articles in Journals
    • View Item
       
    • CGSpace Home
    • International Center for Tropical Agriculture (CIAT)
    • CIAT Articles in Journals
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of manipulated herbivore inputs on nutrient flux and decomposition in a tropical rainforest in Puerto Rico

    Thumbnail
    Authors
    Schowalter, TD
    Fonte, Steven J.
    Geaghan, J
    Wang, J.
    Date
    2011-06
    Language
    en
    Type
    Journal Article
    Review status
    Peer Review
    ISI journal
    Accessibility
    Limited Access
    Metadata
    Show full item record
    Share
    
    Permanent link to cite or share this item: https://hdl.handle.net/10568/43393
    External link to download this item: http://link.springer.com/article/10.1007%2Fs00442-011-2056-3
    DOI: https://doi.org/10.1007/s00442-011-2056-3
    Abstract/Description
    Forest canopy herbivores are known to increase rates of nutrient fluxes to the forest floor in a number of temperate and boreal forests, but few studies have measured effects of herbivore-enhanced nutrient fluxes in tropical forests. We simulated herbivore-induced fluxes in a tropical rainforest in Puerto Rico by augmenting greenfall (fresh foliage fragments), frassfall (insect feces), and throughfall (precipitation enriched with foliar leachates) in replicated experimental plots on the forest floor. Background rates of greenfall and frassfall were measured monthly using litterfall collectors and augmented by adding 10× greenfall or 10× frassfall to designated plots. Throughfall fluxes of NH4, NO3 and PO4 (but not water) were doubled in treatment plots, based on published rates of fluxes of these nutrients in throughfall. Control plots received only background flux rates for these compounds but the same minimum amount of distilled water. We evaluated treatment effects as changes in flux rates for NO3, NH4 and PO4, measured as decomposition rate of leaf litter in litterbags and as adsorption in ion-exchange resin bags at the litter–soil interface. Frass addition significantly increased NO3 and NH4 fluxes, and frass and throughfall additions significantly reduced decay rate, compared to controls. Reduced decay rate suggests that nitrogen flux was sufficient to inhibit microbial decomposition activity. Our treatments represented fluxes expected from low–moderate herbivore outbreaks and demonstrated that herbivores, at these outbreak levels, increase ecosystem-level N and P fluxes by >30% in this tropical rainforest.
    AGROVOC Keywords
    tropical forests; herbivores; nutrient cycling in ecosystems; puerto rico; bosque tropical; herbívoros; ciclo nutrientes en ecosistemas
    Subjects
    SOIL INFORMATION; SOIL HEALTH;
    Countries
    Puerto Rico
    Regions
    Latin America; Caribbean
    Collections
    • CIAT Articles in Journals [2634]

    AboutPrivacy StatementSend Feedback
     

    My Account

    LoginRegister

    Browse

    All of CGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesBy AGROVOC keywordBy ILRI subjectBy CCAFS subjectBy RegionBy CountryBy SubregionBy CRP subjectBy River basinBy Output typeBy Bioversity subjectBy CIAT subjectBy CIP subjectBy CGIAR System subjectBy Alliance Bioversity–CIAT subjectThis CollectionBy Issue DateAuthorsTitlesBy AGROVOC keywordBy ILRI subjectBy CCAFS subjectBy RegionBy CountryBy SubregionBy CRP subjectBy River basinBy Output typeBy Bioversity subjectBy CIAT subjectBy CIP subjectBy CGIAR System subjectBy Alliance Bioversity–CIAT subject

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    AboutPrivacy StatementSend Feedback